Publications by authors named "S Froidevaux"

C5a is an anaphylatoxin protein produced by the cleavage of the complement system's component C5 protein. It signals through the G-protein-coupled receptor C5a receptor 1 (C5aR1) to induce the chemotaxis of primarily neutrophils and monocytes and the release of inflammatory molecules. A large body of evidence linking C5aR1 signaling to acute and chronic inflammatory disorders has triggered interest in developing potent C5aR antagonists.

View Article and Find Full Text PDF

Piperidine is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine .

View Article and Find Full Text PDF

Lysophosphatidic acid receptor 1 (LPAR1) antagonists show promise as potentially novel antifibrotic treatments. In a human LPAR1 β-arrestin recruitment-based high-throughput screening campaign, we identified urea as a hit with a LPAR1 IC value of 5.0 μM.

View Article and Find Full Text PDF

The CXCR3 chemokine receptor is a G protein-coupled receptor mainly expressed on immune cells from the lymphoid lineage, including activated T cells. Binding of its inducible chemokine ligands CXCL9, CXCL10, and CXCL11 leads to downstream signaling events and the migration of activated T cells to sites of inflammation. Herein, we report the third part of our CXCR3 antagonist program in the field of autoimmunity, culminating in the discovery of the clinical compound ACT-777991 ().

View Article and Find Full Text PDF

The chemokine receptor CXCR3 allows the selective recruitment of innate and adaptive inflammatory immune cells into inflamed tissue. CXCR3 ligands are secreted after exposure to pro-inflammatory cytokines. Upon binding to CXCR3 ligands, CXCR3 expressing T-lymphocytes migrate toward sites of inflammation and can promote tissue damage.

View Article and Find Full Text PDF