Publications by authors named "S Fritzsche"

The electronic bridge (EB) excitation of nuclei has been found as a versatile approach to efficiently excite the ^{229}Th isomers. Previous studies on EB excitation have typically disregarded the hyperfine structure as well as the decay of the excited atoms and ions by just treating the nucleus-electron coupling perturbatively. In the present work, we apply a quantum-optical approach to nonperturbatively investigate EB excitation of ^{229}Th^{3+} ions.

View Article and Find Full Text PDF

By exciting a series of 1s^{2} ^{1}S_{0}→1snp^{1}P_{1} transitions in heliumlike nitrogen ions with linearly polarized monochromatic soft x rays at the Elettra facility, we found a change in the angular distribution of the fluorescence sensitive to the principal quantum number n. In particular it is observed that the ratio of emission in directions parallel and perpendicular to the polarization of incident radiation increases with higher n. We find this n dependence to be a manifestation of the Hanle effect, which served as a practical tool for lifetime determinations of optical transitions since its discovery in 1924.

View Article and Find Full Text PDF

The chemotherapeutic agent vincristine is commonly used for a variety of hematologic cancers, as well as solid tumors of the head and neck, bronchial carcinoma, as part of the procarbazine, lomustine and vincristine (PCV) regimen, for glioma. Damage to nerve tissue (neuropathy) is often dose-limiting and restricts treatment. Nimodipine is a calcium antagonist that has also shown neuroprotective properties in preliminary studies.

View Article and Find Full Text PDF

Iterative Bleaching Extends multipleXity (IBEX) is a versatile method for highly multiplexed imaging of diverse tissues. Based on open science principles, we created the IBEX Knowledge-Base, a resource for reagents, protocols and more, to empower innovation.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the urgent need for sustainable plastic recycling methods, especially for polyethylene terephthalate (PET), due to increasing plastic waste and fossil resource depletion, highlighting biocatalytic recycling as a promising solution.* -
  • The study compares the production of a biocatalyst, cutinase ICCG, using two different bacteria: E. coli and C. glutamicum, finding that E. coli released significantly more of the enzyme due to its unique membrane properties.* -
  • Optimizations in the growth conditions for E. coli led to impressive levels of cutinase production and enzymatic activity, demonstrating its effectiveness in breaking down PET materials quickly and efficiently.*
View Article and Find Full Text PDF