Am J Physiol Cell Physiol
December 2022
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization.
View Article and Find Full Text PDFHere we propose a general strategy to label carbohydrates with N-methyl-anthranilic acid at the anomeric position. Through two examples, we demonstrate that the generated glycoprobes are suitable for fluorescence-based binding/competition assays. Our approach is expected to readily generate series of glycoprobes dedicated to screening assays for the discovery of drugs targeting carbohydrate-protein interactions.
View Article and Find Full Text PDFProteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. Biosynthesis of PGs is complex and involves a large number of glycosyltranferases. We report herein for the first time the synthesis of a collection of various sulfoforms of the disaccharide GlcA-1,3-β-d-Gal and trisaccharides GlcNAc-1,4-α-d-GlcA-1,3-β-d-Gal and GalNAc-1,4-β-d-GlcA-1,3-β-d-Gal using a regioselective glycosylation.
View Article and Find Full Text PDFHeparansulfate (HS) modifications are master regulators of the cross-talk between cell and matrix and modulate the biological activity of an array of HS binding proteins, including growth factors and chemokines, morphogens and immunity cell receptors. This review will highlight the importance of HS maturation mediated by N-deactetylase/sulfotransferases, 2O- and 6O-sulfotransferases in cancer biology, and will focus on the 3O-sulfotransferases and on the terminal, rare 3O-sulfation, and their important but still enigmatic impact in cancer progression. The review will also discuss the molecular mechanisms of action of these HS modifications with regards to ligand interactions and signaling in the cancer process and their clinical significance.
View Article and Find Full Text PDFProteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS).
View Article and Find Full Text PDF