Purpose: Tumor relapse after radiotherapy is a major hurdle in treating pediatric H3K27M-mutant diffuse midline gliomas (DMG). Radiotherapy-induced stress increases association of BCL2 family of proteins with BH3 pro-apoptotic activators preventing apoptosis. We hypothesized that inhibition of radiotherapy-induced BCL2 with a clinically relevant inhibitor, venetoclax, will block BCL2 activity leading to increased apoptosis.
View Article and Find Full Text PDFBackground: Group 3 medulloblastoma (MB) is often accompanied by MYC amplification. PLK1 is an oncogenic kinase that controls cell cycle and proliferation and has been preclinically validated as a cancer therapeutic target. Onvansertib (PCM-075) is a novel, orally available PLK1 inhibitor, which shows tumor growth inhibition in various types of cancer.
View Article and Find Full Text PDFMYC-driven medulloblastoma is a major therapeutic challenge due to frequent metastasis and a poor 5-year survival rate. MYC gene amplification results in transcriptional dysregulation, proliferation, and survival of malignant cells. To identify therapeutic targets in MYC-amplified medulloblastoma, we employ a CRISPR-Cas9 essentiality screen targeting 1,140 genes.
View Article and Find Full Text PDFPolo-like kinase 1 () is highly expressed in group 3 medulloblastoma (MB), and it has been preclinically validated as a cancer therapeutic target in medulloblastoma. Here, we demonstrate that PLK1 inhibition with PCM-075 or BI6727 significantly reduces the growth of MB cells and causes a decrease of mRNA and protein levels. We show that MYC activates transcription, while the inhibition of PLK1 suppresses MB tumor development and causes a decrease in c-MYC protein level by suppressing FBXW7 auto poly-ubiquitination.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo.
View Article and Find Full Text PDF