Purpose: To investigate the early development of spontaneous retinal neovascularization in the murine retina by a multifunctional optical coherence tomography approach. To characterize involved tissue changes in vivo and describe structural and functional changes over time.
Methods: A multifunctional optical coherence tomography (OCT) system providing 3-fold contrast comprising reflectivity, polarization sensitivity, and OCT angiography (OCTA) was utilized to image very-low-density lipoprotein receptor (VLDLR) knockout mice.
A multi-functional optical coherence tomography (OCT) approach is presented to determine ocular fundus pulsations as an axial displacement between the retina and the chorioscleral complex in the albino rat eye. By combining optical coherence elastography and OCT angiography (OCTA), we measure subtle deformations in the nanometer range within the eye and simultaneously map retinal and choroidal perfusion. The conventional OCT reflectivity contrast serves as a backbone to segment the retina and to define several slabs which are subsequently used for quantitative ocular pulsation measurements as well as for a qualitative exploration of the multi-functional OCT image data.
View Article and Find Full Text PDFIt is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.
View Article and Find Full Text PDFPolarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber.
View Article and Find Full Text PDF