Publications by authors named "S Famiglietti"

A growing family of inhibitory receptors characterized by content of one or more immunoreceptor tyrosine-based inhibitor motif (ITIM), I/V xYxxL/V, has been shown to regulate activation and effector function of immune system cells. The inhibitory activity of these receptors is mediated in large part by tyrosyl phosphorylated ITIM (pITIM) interactions with cytoplasmic effectors. Interestingly, different members of the family utilize partially distinct subsets of effectors from a group that includes SHP-1, SHP-2 and SHIP, an inositol 5' phosphatase.

View Article and Find Full Text PDF

Spirolactam-based Pro-Pro mimetics incorporated in the consensus sequence XPpXP, lead to effective nonpeptide ligands of SH3 domains.

View Article and Find Full Text PDF

The B cell receptor (BCR) triggers a variety of biological responses that differ depending upon the properties of the antigen. A panel of M13 phage-displayed peptide ligands with varying affinity for the 3-83 antibody was generated to explore the role of antigen-BCR affinity in cell activation studies using primary 3-83 transgenic mouse B cells. Multiple parameters of activation were measured.

View Article and Find Full Text PDF

CD79a and CD79b function as transducers of B cell antigen receptor signals via a cytoplasmic sequence, termed the immunoreceptor tyrosine-based activation motif (ITAM). ITAMs contain two conserved tyrosines that may become phosphorylated upon receptor aggregation and bind distinct effectors by virtue of the distinct preference of phosphotyrosyl-containing sequences for SH2 domains. To explore the function of CD79a and CD79b ITAM tyrosines, we created membrane molecules composed of MHC class II I-Ak extracellular and transmembrane domains, and CD79a or CD79b cytoplasmic domains in which one or both of the ITAM tyrosines were mutated to phenylalanine.

View Article and Find Full Text PDF

Antigen binding to the B cell receptor (BCR) induces receptor desensitization, a condition characterized by cellular unresponsiveness to subsequent Ag stimulation despite the continued ability to bind Ag. To better understand the molecular mechanism of this unresponsiveness, we have used complementary lymphoma (K46 mu) and Ig transgenic (3-83 mu delta) mouse models to study regulation of BCR signaling. Our findings in the lymphoma model show that an initial Ag encounter renders receptors unresponsive to subsequent Ag challenge, as measured by their inability to mobilize Ca2+ and to mediate phosphorylation of receptor-proximal kinases, including Lyn, Blk, and Syk.

View Article and Find Full Text PDF