Publications by authors named "S Fakan"

The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure.

View Article and Find Full Text PDF

In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells.

View Article and Find Full Text PDF

Background Information: Sphingomyelin is one of the major phospholipids in the cell nucleus. However, its intranuclear distribution with regard to different functional nuclear domains as well as its possible involvement in the nuclear functional architecture remains to be elucidated.

Results: We carried out an ultrastructural cytochemical study of the intranuclear distribution of SM (sphingomyelin) using an in situ binding assay of neutral SMase (sphingomyelinase) conjugated to colloidal gold particles.

View Article and Find Full Text PDF

The nuclear architecture is considered an important contributor to genome function. Although the fine structural features of the cell nucleus have been investigated extensively by means of ultrastructural cytochemistry, mainly on ultrathin sections in two dimensions (2D), there was a of lack routine methods for a rapid reconstruction of three-dimensional (3D) distribution of different structural constituents throughout the nuclear volume. We have now filled this gap by the application of a novel approach associating a pre-embedding selective visualization of nuclear components with a method making use of ultramicrotomy combined with scanning electron microscopy (microtome serial block face scanning electron microscopy--'3View').

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region.

View Article and Find Full Text PDF