Microbial burden associated with near-patient touch surfaces results in a greater risk of health care-associated infections (HAIs). Acute care beds may be a critical fomite, as traditional plastic surfaces harbor the highest concentrations of bacteria associated with high-touch surfaces in a hospital room's patient zone. Five high-touch intensive care unit (ICU) bed surfaces encountered by patients, health care workers, and visitors were monitored by routine culture to assess the effect U.
View Article and Find Full Text PDFMicrobial bioburden associated with the built environment can impact the rate of health care-associated infection acquisition; higher bioburden results in a greater incidence of health care-associated infections. Two disinfectants registered by the US Environmental Protection Agency and a trial disinfectant were evaluated for their ability to limit the establishment of bioburden subsequent to application under in situ conditions on patient bed rails within a medical intensive care unit. Bioburden samples were collected immediately prior to disinfection and at 1, 6, and 24 hours after application.
View Article and Find Full Text PDFBackground: Stethoscopes may serve as vehicles for transmission of bacteria among patients. The aim of this study was to assess the efficacy of antimicrobial copper surfaces to reduce the bacterial concentration associated with stethoscope surfaces.
Methods: A structured prospective trial involving 21 health care providers was conducted at a pediatric emergency division (ED) (n = 14) and an adult medical intensive care unit located in tertiary care facilities (n = 7).
Cleaning is an effective way to lower the bacterial burden (BB) on surfaces and minimize the infection risk to patients. However, BB can quickly return. Copper, when used to surface hospital bed rails, was found to consistently limit surface BB before and after cleaning through its continuous antimicrobial activity.
View Article and Find Full Text PDFThe contribution of environmental surface contamination with pathogenic organisms to the development of health care-associated infections (HAI) has not been well defined. The microbial burden (MB) associated with commonly touched surfaces in intensive care units (ICUs) was determined by sampling six objects in 16 rooms in ICUs in three hospitals over 43 months. At month 23, copper-alloy surfaces, with inherent antimicrobial properties, were installed onto six monitored objects in 8 of 16 rooms, and the effect that this application had on the intrinsic MB present on the six objects was assessed.
View Article and Find Full Text PDF