This dataset includes four large field-of-view scanning electron microscopy (SEM) images together with associated Matlab scripts aimed for the analysis used in the joint publication. Each of the four stitched images is generated from a large number (between 15500 and 24500) high-resolution (195nm/pixel) scans, which have been stitched into four images stored as tiff-files. The images show the cross-section of fiber bundles in composite laminate and are well-suited for local fiber volume determination.
View Article and Find Full Text PDFThe fatigue damage evolution depends on the local fibre volume fraction as observed in the co-submitted publication [1]. Conventionally, fibre volume fractions are determined as an averaged overall fibre volume fraction determined from small cuts of the laminate. Alternatively, automatically stitching of scanning electron microscopy (SEM) images can make high-resolution scans of large cross-section area with large contrast between the polymer and glass-fibre phase.
View Article and Find Full Text PDFThis data article contains lab-based micro-computed tomography (μCT) data of cracks and crack networks in 4 different bearings, mainly from wind turbines, which formed the basis for the crack analysis reported in Danielsen et al. (Danielsen et al., 2019).
View Article and Find Full Text PDFThis data article contains lab-based micro-computed tomography (μCT) data of unidirectional (UD) non-crimp fabric (NCF) carbon fibre reinforced composite specimens that have been deformed by compression. The specimens contain UD fibres with off-axis angles of 0°, 5°, 10°, 15° and 20° and the compression testing induces kink-band formation. This data formed the basis for the analysis of the influence of in-plane shear on kink-plane orientation as reported in Wilhelmsson et al.
View Article and Find Full Text PDF