Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.
Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.
Objectives: Urolithiasis, a common and painful urological condition, is influenced by factors such as lifestyle, genetics, and medication. Differentiating between different types of kidney stones is crucial for personalized therapy. The purpose of this study is to investigate the use of photon-counting computed tomography (PCCT) in combination with radiomics and machine learning to develop a method for automated and detailed characterization of kidney stones.
View Article and Find Full Text PDFBackground: For treatment of urolithiasis, the stone composition is of particular interest, as uric acid (UA) stones can be treated by chemolitholysis. In this ex vivo study, we employed an advanced composition analysis approach for urolithiasis utilizing spectral data obtained from a photon-counting detector CT (PCDCT) to differentiate UA and non-UA stones. Our primary objective was to assess the accuracy of this analysis method.
View Article and Find Full Text PDF