Optimal immune function is crucial in preventing cancer development and growth and for the success of anti-cancer therapies. Here, we characterized the peripheral immunological status of 83 steroids-naïve pediatric patients with central nervous system neoplasia at the disease onset. Tumors were classified into low-grade gliomas (LGG), high-grade gliomas (HGG), medulloblastoma, and other tumors.
View Article and Find Full Text PDFLung cancer is still a leading cause of cancer-related deaths worldwide. Vital to ameliorating patient survival rates are early detection, precise evaluation, and personalized treatments. Recent years have witnessed a profound transformation in the field, marked by intricate diagnostic processes and intricate therapeutic protocols that integrate diverse omics domains, heralding a paradigm shift towards personalized and preventive healthcare.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are innate-like T cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematologic malignancies undergoing allogeneic (allo)-HSCT between April 2019 and May 2022, from unrelated matched donor (MUD, N=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, N=93) donor after in vitro αβT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis.
View Article and Find Full Text PDFArtificial Intelligence (AI) has revolutionized the management of non-small-cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis assessment, treatment prediction, response evaluation, recurrence/prognosis prediction, and personalized prognostic assessment. AI algorithms may accurately classify NSCLC stages using machine learning techniques and deep imaging data analysis. This could potentially improve precision and efficiency in staging, facilitating personalized treatment decisions.
View Article and Find Full Text PDFThe BAP1 tumor suppressor gene encodes a deubiquitinase enzyme involved in several cellular activities, including DNA repair and apoptosis. Germline pathogenic variants in BAP1 have been associated with heritable conditions including BAP1 tumor predisposition syndrome 1 (BAP1-TPDS1) and a neurodevelopmental disorder known as Kury-Isidor syndrome (KURIS). Both these conditions are caused by monoallelic, dominant alterations of BAP1 but have never been reported in the same subject or family, suggesting a mutually exclusive genotype-phenotype correlation.
View Article and Find Full Text PDF