Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na] and [Thd+Na] produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes.
View Article and Find Full Text PDFUridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed.
View Article and Find Full Text PDFThe influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra.
View Article and Find Full Text PDFTo gain a better understanding of the binding mechanism and assist in the optimization of chemical probing and drug design applications, experimental and theoretical studies of a series of amino acid-linked cisplatin derivatives are being pursued. Glyplatin (glycine-linked cisplatin) was chosen for its structural simplicity and to enable backbone effects to be separated from side-chain effects on the structure and reactivity of ornithine- and lysine-linked cisplatin (Ornplatin and Lysplatin, respectively). Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on Glyplatin to characterize its structure and guide the selection of the most effective hybrid theoretical approach for determining its structure and IR spectrum.
View Article and Find Full Text PDF