Publications by authors named "S F Prewitt"

Background: Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest.

View Article and Find Full Text PDF

Background: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives.

View Article and Find Full Text PDF

Background: In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways.

View Article and Find Full Text PDF

Obstacle course races are a popular source of recreation in the United States, providing additional challenges over traditional endurance events. Despite their popularity, very little is known about the physiological or cognitive demands of obstacle course races compared to traditional road races. The purpose of this study was to investigate the physiological effects of participation in an extreme obstacle course race.

View Article and Find Full Text PDF

Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton.

View Article and Find Full Text PDF