Odor source localization (OSL) technology allows autonomous agents like mobile robots to localize a target odor source in an unknown environment. This is achieved by an OSL navigation algorithm that processes an agent's sensor readings to calculate action commands to guide the robot to locate the odor source. Compared to traditional 'olfaction-only' OSL algorithms, our proposed OSL algorithm integrates vision and olfaction sensor modalities to localize odor sources even if olfaction sensing is disrupted by non-unidirectional airflow or vision sensing is impaired by environmental complexities.
View Article and Find Full Text PDFGenetically encoded calcium (Ca ) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all- optical experimental approaches.
View Article and Find Full Text PDFInspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization.
View Article and Find Full Text PDFThe predominant adverse health effects in care delivery result from hospital-acquired (nosocomial) infections, which impose a substantial financial burden on global healthcare systems. Integrating contact-killing antibacterial action, gas permeability, and antioxidant properties into textile coatings offers a transformative solution, significantly enhancing both medical and everyday protective applications. This study presents an innovative, pollution-free physical compounding method for creating a fluorescent biopolymer composite embedded with silicene-based heteroatom-doped carbon quantum dots for the production of functional textiles.
View Article and Find Full Text PDF