The human epidermal growth factor receptor 2 (HER2) gene is a critical biomarker for determining amplification status and targeting clinical therapies in breast cancer treatment. This study introduces a computer-aided method that automatically measures and scores HER2 gene status from invasive tissue regions of breast cancer using whole slide images (WSI) through silver hybridization (SISH) staining. Image processing and deep learning techniques are employed to isolate untruncated and non-overlapping single nuclei from cancer regions.
View Article and Find Full Text PDFAmyloid diseases are characterized by the accumulation of misfolded protein aggregates in human tissues, pose significant challenges for both diagnosis and treatment. Protein aggregations known as amyloids are linked to several neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, and systemic amyloidosis. The key goal of this research is to employ Small-Angle X-ray Scattering (SAXS) to examine the supramolecular structures of amyloid aggregates in human tissues.
View Article and Find Full Text PDFRecent advancements in medical imaging have greatly enhanced the application of computational techniques in digital pathology, particularly for the classification of breast cancer using in situ hybridization (ISH) imaging. HER2 amplification, a key prognostic marker in 20-25% of breast cancers, can be assessed through alterations in gene copy number or protein expression. However, challenges persist due to the heterogeneity of nuclear regions and complexities in cancer biomarker detection.
View Article and Find Full Text PDF