RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape.
View Article and Find Full Text PDFThe quest for scarless wound healing is imperative in healthcare, aiming to diminish the challenges of conventional wound treatment. Hyaluronic acid (HA), a key component of the skin's extracellular matrix, plays a pivotal role in wound healing and skin rejuvenation. Leveraging the advantages of HA hydrogels, this research focuses first on tuning the physicochemical and mechanical properties of photo-crosslinkable methacrylated HA (MAHA) by varying the methacrylation degree, polymer concentration, photo-crosslinker concentration, and UV exposure time.
View Article and Find Full Text PDFDelivering anticancer drugs to the appropriate site within the body poses a critical challenge in cancer treatment with chemotherapeutic agents like doxorubicin (DOX). Magnetic graphene oxide (GO) nanosheets with generation 1 (G1) amidoamine-dendronized crosslinks were developed by coupling cystamine-functionalized GO nanosheets with Fe3O4 nanoparticles modified with primary amine and methyl acrylate. These magnetic GO nanosheets were loaded with DOX to create a dual pH- and redox-responsive delivery system for cancer chemotherapy.
View Article and Find Full Text PDFInflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety.
View Article and Find Full Text PDF