The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high-resolution patterning of hexagonal boron nitride (h-BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated.
View Article and Find Full Text PDFWe present an accurate measurement and a quantitative analysis of electron-beam-induced displacements of carbon atoms in single-layer graphene. We directly measure the atomic displacement ("knock-on") cross section by counting the lost atoms as a function of the electron-beam energy and applied dose. Further, we separate knock-on damage (originating from the collision of the beam electrons with the nucleus of the target atom) from other radiation damage mechanisms (e.
View Article and Find Full Text PDFClusters of transition metals, W, Re, and Os, upon encapsulation within a single-walled carbon nanotube (SWNT) exhibit marked differences in their affinity and reactivity with the SWNT, as revealed by low-voltage aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). Activated by an 80 keV electron beam, W reacts only weakly with the SWNT, Re creates localized defects on the sidewall, and Os reacts readily causing extensive defect formation and constriction of the SWNT sidewall followed by total rupture of the tubular structure. AC-HRTEM imaging at the atomic level of structural transformations caused by metal-carbon bonding of π- and σ-character demonstrates what a crucial role these types of bonds have in governing the interactions between the transition metal clusters and the SWNT.
View Article and Find Full Text PDFThe electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with a lattice transfer of 213 pm (tilted illumination).
View Article and Find Full Text PDF