Publications by authors named "S Eule"

Real-world agents, humans as well as animals, observe each other during interactions and choose their own actions taking the partners' ongoing behaviour into account. Yet, classical game theory assumes that players act either strictly sequentially or strictly simultaneously without knowing each other's current choices. To account for action visibility and provide a more realistic model of interactions under time constraints, we introduce a new game-theoretic setting called transparent games, where each player has a certain probability of observing the partner's choice before deciding on its own action.

View Article and Find Full Text PDF

Spatial heterogeneity of a host population of mobile agents has been shown to be a crucial determinant of many aspects of disease dynamics, ranging from the proliferation of diseases to their persistence and to vaccination strategies. In addition, the importance of regional and structural differences grows in our modern world. Little is known, though, about the consequences when traits of a disease vary regionally.

View Article and Find Full Text PDF

Muller's ratchet is a paradigmatic model for the accumulation of deleterious mutations in a population of finite size. A click of the ratchet occurs when all individuals with the least number of deleterious mutations are lost irreversibly due to a stochastic fluctuation. In spite of the simplicity of the model, a quantitative understanding of the process remains an open challenge.

View Article and Find Full Text PDF

The description of diffusion processes is possible in different frameworks such as random walks or Fokker-Planck or Langevin equations. Whereas for classical diffusion the equivalence of these methods is well established, in the case of anomalous diffusion it often remains an open problem. In this paper we aim to bring three approaches describing anomalous superdiffusive behavior to a common footing.

View Article and Find Full Text PDF

We introduce a population model for species under cyclic competition. This model allows individuals to coexist and interact on single cells while migration takes place between adjacent cells. In contrast to the model introduced by Reichenbach, Mobilia, and Frey [Reichenbach, Mobilia, and Frey, Nature (London) 448, 1046 (2007)], we find that the emergence of spirals results in an ambiguous behavior regarding the stability of coexistence.

View Article and Find Full Text PDF