Biofilm formation over burn wounds has led to persistent wound infection, poor wound healing, and resistance to antimicrobial therapy. This process ultimately leads to prolonged hospital stays and increased cost of burn wound care, especially in developing countries. Hence, large-area biofilm-targeted therapy should be a mainstay in burn wound care.
View Article and Find Full Text PDFThe bactericidal effect of biomimetic nanostructured surfaces has been known for a long time, with recent data suggesting an enhanced efficiency of the nanostructured surfaces under fluid shear. While some of the influential factors on the bactericidal effect of nanostructured surfaces under fluid shear are understood, there are numerous important factors yet to be studied, which is essential for the successful implementation of this technology in industrial applications. Among those influential factors, the orientation of the nanostructured surface can play an important role in bacterial cell adhesion onto surfaces.
View Article and Find Full Text PDFBacterial infections and antibiotic resistance remain significant contributors to morbidity and mortality worldwide. Despite recent advances in biomedical research, a substantial number of medical devices and implants continue to be plagued by bacterial colonisation, resulting in severe consequences, including fatalities. The development of nanostructured surfaces with mechano-bactericidal properties has emerged as a promising solution to this problem.
View Article and Find Full Text PDFThe distal great saphenous vein is a popular site for venous access by means of percutaneous cannulation or venous cutdown in a hemodynamically unstable patient. The aim of this study was to precisely define the surface anatomy and dimensions of the distal part of the great saphenous vein to facilitate the aforementioned procedures. Cross-sectional anatomy of the distal saphenous vein was studied in 24 cadaveric ankles sectioned at a horizontal plane across the most prominent points of the medial and lateral malleoli.
View Article and Find Full Text PDFBacterial colonization on solid surfaces creates enormous problems across various industries causing billions of dollars' worth of economic damages and costing human lives. Biomimicking nanostructured surfaces have demonstrated a promising future in mitigating bacterial colonization and related issues. The importance of this non-chemical method has been elevated due to bacterial evolvement into antibiotic and antiseptic-resistant strains.
View Article and Find Full Text PDF