The leading cause of cancer mortality remains lung cancer (LC), of which non-small cell lung cancer (NSCLC) is the predominant type. Chemotherapy achieves only low response rates while inflicting serious untoward toxicity. Herein, we studied the binding and internalization of S15-aptamer (S15-APT)-decorated polyethylene glycol-polycaprolactone (PEG-PCL) nanoparticles (NPs) by various human NSCLC cell lines.
View Article and Find Full Text PDFObjectives: In some patients treated for urinary or fecal incontinence with sacral neuromodulation (SNM) persistence of symptoms, a reduction in efficacy or adverse effects of stimulation can occur. In such situations, further programming of the SNM device can help resolve problems. Infrequently hardware failure is detected.
View Article and Find Full Text PDFSelectively targeted drug delivery systems are preferable chemotherapeutic platforms, as they specifically deliver the drug cargo into tumor cells, while minimizing untoward toxic effects. However, these delivery systems suffer from insufficient encapsulation efficiency (EE), encapsulation capacity (EC), and premature drug release. Herein, we coencapsulated paclitaxel (PTX) and Jasmine oil (JO) within PEG-PCL nanoparticles (NPs), with an average diameter < 50 nm, selectively targeted to non-small cell lung cancer (NSCLC) cells, via S15-aptamer (APT) decoration.
View Article and Find Full Text PDFAim: Sacral neuromodulation (SNM) is a widely adopted treatment for overactive bladder, non-obstructive urinary retention and faecal incontinence. In the majority, it provides sustained clinical benefit. However, it is recognized that, even for these patients, stimulation parameters (such as amplitude, electrode configuration, frequency and pulse width) may vary at both initial device programming and at reprogramming, the latter often being required to optimize effectiveness.
View Article and Find Full Text PDF