ChIP-seq is a widely used technique for studying histone post-translational modifications and DNA-binding proteins. DNA fragments associated with a specific protein or histone modification epitope are captured by using antibodies, sequenced and mapped to a reference genome. Albeit versatile and popular, performing many parallel ChIP-seq experiments to compare different conditions, replicates and epitopes is laborious, is prone to experimental variation and does not allow quantitative comparisons unless adequate spike-in chromatin is included.
View Article and Find Full Text PDFThe sodium potassium pump, Na,K-ATPase (NKA), is an integral plasma membrane protein, expressed in all eukaryotic cells. It is responsible for maintaining the transmembrane Na gradient and is the major determinant of the membrane potential. Self-interaction and oligomerization of NKA in cell membranes has been proposed and discussed but is still an open question.
View Article and Find Full Text PDFStop codon suppression using dedicated tRNA/aminoacyl-tRNA synthetase (aaRS) pairs allows for genetically encoded, site-specific incorporation of non-canonical amino acids (ncAAs) as chemical handles for protein labeling and modification. Here, we demonstrate that piggyBac-mediated genomic integration of archaeal pyrrolysine tRNA (tRNA)/pyrrolysyl-tRNA synthetase (PylRS) or bacterial tRNA/aaRS pairs, using a modular plasmid design with multi-copy tRNA arrays, allows for homogeneous and efficient genetically encoded ncAA incorporation in diverse mammalian cell lines. We assess opportunities and limitations of using ncAAs for fluorescent labeling applications in stable cell lines.
View Article and Find Full Text PDFProteins are typically targeted to the proteasome for degradation through the attachment of ubiquitin chains and the proteasome initiates degradation at a disordered region within the target protein. Yet some proteins with ubiquitin chains and disordered regions escape degradation. Here we investigate how the position of the ubiquitin chain on the target protein relative to the disordered region modulates degradation and show that the distance between the two determines whether a protein is degraded efficiently.
View Article and Find Full Text PDFGenetic code expansion via amber suppression allows cotranslational, site-specific introduction of nonnatural chemical groups into proteins in the living cell. The archaeal pyrrolysine-tRNA/pyrrolysine-tRNA synthetase (PylT/RS) pair from Methanosarcina mazei (Mma) has been established for incorporation of a wide range of noncanonical amino acids (ncAAs) in mammalian cells. Once integrated in an engineered protein, ncAAs allow for simple click-chemistry derivatization, photo-cage control of enzyme activity, and site-specific placement of posttranslational modifications.
View Article and Find Full Text PDF