Publications by authors named "S Eh Shirmovsky"

The paper considers the possibility of implementing a quantum entanglement distribution in the cell microtubule. It has been shown that a quantum entanglement distribution proposed in the paper determines the process of quantum state teleportation through microtubule tryptophan chain. The work shows that the system of tryptophans in a microtubule essentially is a quantum network that consists of: spatially spaced nodes - tryptophans, quantum communication channels connecting tryptophans and qubits transmitted through these communication channels.

View Article and Find Full Text PDF

In the work based on the quantum gates representation, the modeling of the quantum entangled state transfer protocol in the cell microtubules is carried out. It has been proved that considered data transmission can be determined as a mechanism that ensures the transfer of information through a quantum channel in microtubule tryptophans chain. The influence of external factors on the formation of entangled states is investigated.

View Article and Find Full Text PDF

The paper simulates the process of the migration of a single energy excitation along a chain of tryptophans in cell microtubules connected by dipole-dipole interaction. The paper shows that the excited states propagation rate falls within the range of nerve impulse velocity. It was shown that such a process also causes a transfer of quantum entanglement between tryptophans, so that microtubules can be considered as signaling system, the basis for transmitting information via the quantum channel.

View Article and Find Full Text PDF

The paper investigates microtubules lattice properties taking into consideration elastic, dipole-dipole interaction of tubulins and viscosity. A microtubule is modeled as a system of bound tubulins, forming a skewed hexagonal two-dimensional lattice. Wave frequencies and group velocities have been calculated.

View Article and Find Full Text PDF

A model predicting the behavior of a hole acting on the DNA strand was investigated. The hole-DNA interaction on the basis of a quantum-classical, non-linear DNA single strand model was described. The fact that a DNA molecule is formed by a furanose ring as its sugar, phosphate group and bases was taken into consideration.

View Article and Find Full Text PDF