We provide an extensive review of 14 studies (11 independent and three industry-funded) on emissions generated by Electronic Cigarettes (ECs), specifically focusing on the evaluation of carbonyls present in these emissions and emphasizing a meticulous evaluation of their analytical methods and experimental procedures. Since the presence of carbonyl by-products in EC aerosol is concerning, it is important to evaluate the reliability of emission studies quantifying these compounds by verifying their compliance with the following criteria of experimental quality: authors must 1) supply sufficient information on the devices and experimental procedures to allow for potentially reproducing or replicating the experiments, 2) use of appropriate puffing protocols that approach consumer usage as best as possible, 3) use of appropriate analytical methods and 4) usage of blank samples to avoid false positive detection. Outcomes were classified in terms of the fulfilment of these conditions as reliable in seven studies, partially reliable in five studies, and unreliable in two studies.
View Article and Find Full Text PDFA minimal necessary condition for preclinical studies to contribute to risk assessments of e-cigarettes (ECs) is the ability to expose laboratory animals to an appropriate dosage of aerosols. In this study, we examined the fulfilment of this essential consistency condition for the ECX-Joyetech E-Vic Mini (ECX), a piece of computerized exposure equipment manufactured by SCIREQ, which has been employed by numerous in vivo testing. We began by calibrating the customary Evic VTC mini device mod and the 4 coils available, reproducing in the laboratory the operation of the ECX in the power-control and temperature-control modes, using puffing parameters recommended by its documentation.
View Article and Find Full Text PDFWe review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and "dry puffs". The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users.
View Article and Find Full Text PDFThe inhalation of metallic compounds in e-cigarette (EC) aerosol emissions presents legitimate concerns of potential harms for users. We provide a critical review of laboratory studies published after 2017 on metal contents in EC aerosol, focusing on the consistency between their experimental design, real life device usage and appropriate evaluation of exposure risks. All experiments reporting levels above toxicological markers for some metals (e.
View Article and Find Full Text PDF