Bioresour Technol
December 2024
Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass.
View Article and Find Full Text PDFThe advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate.
View Article and Find Full Text PDFIn regions with intensive livestock production, managing the environmental impact of manure is a critical challenge. This study, set in Flanders (Belgium), evaluates the effectiveness of integrating process intensification measures into the treatment of piggery manure to mitigate nitrogen (N) surplus issues. The research investigates the techno-economic benefits of implementing three key interventions: pure oxygen (PO) aeration, ammonia (NH) stripping-scrubbing (SS) pretreatment, and tertiary treatment using constructed wetlands (CW), within the conventional nitrification-denitrification (NDN) process.
View Article and Find Full Text PDFMicrobes are powerful upgraders, able to convert simple substrates to nutritional metabolites at rates and yields surpassing those of higher organisms by a factor of 2 to 10. A summary table highlights the superior efficiencies of a whole array of microbes compared to conventionally farmed animals and insects, converting nitrogen and organics to food and feed. Aiming at the most resource-efficient class of microbial proteins, deploying the power of open microbial communities, coined here as 'symbiotic microbiomes' is promising.
View Article and Find Full Text PDFRegenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA).
View Article and Find Full Text PDF