The case study was conducted in an underground coal mine to characterize submicron aerosols at a continuous miner (CM) section, assess the concentrations of diesel aerosols at the longwall (LW) section, and assess the exposures of selected occupations to elemental carbon (EC) and total carbon (TC). The results show that aerosols at the CM sections were a mixture of aerosols freshly generated at the outby portion of the CM section and those generated in the main drifts that supply "fresh air" to the section. The relatively low ambient concentrations and personal exposures of selected occupations suggest that currently applied control strategies and technologies are relatively effective in curtailing exposures to diesel aerosols.
View Article and Find Full Text PDFA study was conducted to examine the potential of diesel emissions control strategies based on retrofitting existing power packages with exhaust aftertreatment devices and repowering with advanced power packages. The retrofit systems, a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF), were evaluated individually using a US EPA tier 2 (ter 2) engine operated under four steady-state conditions and one transient cycle. The DOC effectively curtailed emissions of CO, and to some extent organic carbon (OC), elemental carbon (EC), and aerosol number concentration.
View Article and Find Full Text PDFNIOSH researchers designed a high-sensitivity (HS) cassette to improve the limit of detection of the National Institute for Occupational Safety and Health's (NIOSH) method 5040 and the Airtec near real-time diesel particulate matter (DPM) monitor. This was achieved by reducing the size of the diesel particulate matter deposition spot from 8.0 cm (NIOSH method 5040 mining samples) and 7.
View Article and Find Full Text PDFA study was conducted in an underground mine with the objective to identify, characterize, and source apportion airborne aerosols at the setup face and recovery room during longwall move operations. The focus was on contributions of diesel- and battery-powered heavy-duty vehicles used to transfer equipment between the depleted and new longwall panels and diesel-powered light-duty vehicles used to transport personnel and materials to various locations within the mine. Aerosols at the setup face were found to be distributed among diesel combustion-generated submicrometer and mechanically generated coarse aerosols.
View Article and Find Full Text PDFThe results of laboratory evaluations were used to compare the potential of two alternative, biomass-derived fuels as a control strategy to reduce the exposure of underground miners to aerosols and gases emitted by diesel-powered equipment. The effects of fatty acid methyl ester (FAME) biodiesel and hydrotreated vegetable oil renewable diesel (HVORD) on criteria aerosol and gaseous emissions from an older-technology, naturally aspirated, mechanically controlled engine equipped with a diesel oxidation catalytic converter were compared with those of widely used petroleum-derived, ultralow-sulfur diesels (ULSDs). The emissions were characterized for four selected steady-state conditions.
View Article and Find Full Text PDF