Publications by authors named "S E Schriner"

is a perennial plant, belonging to the Apiaceae family and originating from Japan. This plant has been reported to act as a diuretic, analeptic, antidiabetic, hypertensive, tumor, galactagogue, and laxative. The mechanism of action of is not known, but previous studies have suggested that it may act as an antioxidant.

View Article and Find Full Text PDF

Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes.

View Article and Find Full Text PDF

DNA damage has been hypothesized to be a driving force of the aging process. At the same time, there exists multiple compounds that can extend lifespan in model organisms, such as yeast, worms, flies, and mice. One possible mechanism of action for these compounds is a protective effect against DNA damage.

View Article and Find Full Text PDF

Cinnamon extract has been reported to have positive effects in fruit fly and mouse models for Alzheimer's disease (AD). However, cinnamon contains numerous potential active compounds that have not been individually evaluated. The main objective of this study was to evaluate the impact of cinnamaldehyde, a known putative active compound in cinnamon, on the lifespan and healthspan of models for Alzheimer's disease, which overexpress A and MAPT (Tau).

View Article and Find Full Text PDF

Huntington's disease (HD) is a dominant, late-onset disease characterized by choreiform movements, cognitive decline, and personality disturbance. It is caused by a polyglutamine repeat expansion in the Huntington's disease gene encoding for the Huntingtin protein (Htt) which functions as a scaffold for selective macroautophagy. Mutant Htt (mHtt) disrupts vesicle trafficking and prevents autophagosome fusion with lysosomes, thus deregulating autophagy in neuronal cells, leading to cell death.

View Article and Find Full Text PDF