Publications by authors named "S E P Bruzzone"

Elevated levels of the nicotinamide adenine dinucleotide (NAD+)-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in Multiple Myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials due to the existence of alternative NAD+ production routes utilizing NAD+ precursors other than nicotinamide.

View Article and Find Full Text PDF

The search and development of effective sirtuin small molecule inhibitors (SIRTIs) continues to draw great attention due to their wide range of pharmacological applications. Based on SIRTs' involvement in different biological pathways, their ligands were investigated for many diseases, such as cancer, neurodegenerative disorders, diabetes, cardiovascular diseases and autoimmune diseases. The elucidation of a substantial number of SIRT2-ligand complexes is steering the identification of novel and more selective modulators.

View Article and Find Full Text PDF

Introduction: Growth Differentiation Factor 15 (GDF15) increases substantially during pregnancy and is primarily produced by the placenta. Elevated levels of GDF15 have been associated with mental health problems in non-perinatal populations, higher corticosterone levels, and decreased estrogen receptor activity. However, the role of GDF15 in mental health during the perinatal transition remains unknown.

View Article and Find Full Text PDF

Selective serotonin reuptake inhibitors (SSRI) are frequently ineffective in treating depressive episodes and biomarkers are needed to optimize antidepressant treatment outcomes. DNA methylation levels of serotonin transporter (SLC6A4) and tryptophan hydroxylase 2 genes (TPH2) have been suggested to predict antidepressant clinical outcomes but their applicability remains uncertain. In this study, we: 1) evaluated SLC6A4/TPH2 methylation biomarker potential for predicting clinical outcomes after escitalopram treatment; 2) evaluated whether changes in SLC6A4/TPH2 methylation are informative of treatment mechanisms.

View Article and Find Full Text PDF

Background: Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT) in a cohort of healthy individuals (N = 254) and, for 5-HT in a cohort of unmedicated patients with depression (N = 90).

View Article and Find Full Text PDF