Unlabelled: Biomarkers of response are needed in breast cancer to stratify patients to appropriate therapies and avoid unnecessary toxicity. We used peripheral blood gene expression and cell type abundance to identify biomarkers of response and recurrence in neoadjuvant chemotherapy treated breast cancer patients. We identified a signature of interferon and complement response that was higher in the blood of patients with pathologic complete response.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is pathologically defined by lack of expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 amplification and portends an aggressive clinical course with worse outcomes compared with other breast cancers. Until recently, standard treatment options consisted of sequential cytotoxic chemotherapies for both early and metastatic disease. Advances in sequencing technology have led to the identification of 4 main subtypes of TNBC based on recurrent genetic alterations, transcriptional patterns, and molecular features: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal androgen receptor (LAR).
View Article and Find Full Text PDFApproximately 70% of invasive breast cancers have some degree of dependence on the estrogen hormone for cell proliferation and growth. These tumors have estrogen and/or progesterone receptors (ER/PR+), generally referred to as hormone receptor positive (HR+) tumors, as indicated by the presence of positive staining and varying intensity levels of estrogen and/or progesterone receptors on immunohistochemistry. Therapies that inhibit ER signaling pathways, such as aromatase inhibitors (letrozole, anastrozole, exemestane), selective ER modulators (tamoxifen), and ER down-regulators (fulvestrant), are the mainstays of treatment for hormone-receptor-positive breast cancers.
View Article and Find Full Text PDFAlterations in the phosphoinositide 3-kinase (PI3K)/AKT pathway are frequently found in cancer and are especially common in breast cancer, where it is estimated that 70% of tumors have some type of genetic alteration that could lead to pathway hyperactivation. A variety of PI3K pathway inhibitors have been developed in an attempt to target this pathway and improve cancer control. One of the challenges in treating patients with PI3K/AKT pathway inhibitors is the associated toxicity from on-target and off-target effects.
View Article and Find Full Text PDF