Publications by authors named "S E Kubatkin"

Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at T ≈ 50 mK - far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins - factors contributing to reduced coherence.

View Article and Find Full Text PDF

The long theorized two-dimensional allotrope of SiC has remained elusive amid the exploration of graphenelike honeycomb structured monolayers. It is anticipated to possess a large direct band gap (2.5 eV), ambient stability, and chemical versatility.

View Article and Find Full Text PDF

Heterostacks consisting of low-dimensional materials are attractive candidates for future electronic nanodevices in the post-silicon era. In this paper, using first-principles calculations based on density functional theory (DFT), we explore the structural and electronic properties of MoTe/ZrS heterostructures with various stacking patterns and thicknesses. Our simulations show that the valence band (VB) edge of MoTe is almost aligned with the conduction band (CB) edge of ZrS, and (MoTe)/(ZrS) ( = 1, 2) heterostructures exhibit the long-sought broken gap band alignment, which is pivotal for realizing tunneling transistors.

View Article and Find Full Text PDF

Graphene quantum Hall effect (QHE) resistance standards have the potential to provide superior realizations of three key units in the new International System of Units (SI): the ohm, the ampere, and the kilogram (Kibble Balance). However, these prospects require different resistance values than practically achievable in single graphene devices (~12.9 kΩ), and they need bias currents two orders of magnitude higher than typical breakdown currents I ~ 100 μA.

View Article and Find Full Text PDF

The ability to control microwave emission from a spin ensemble is a requirement of several quantum memory protocols. Here, we demonstrate such ability by using a resonator whose frequency can be rapidly tuned with a bias current. We store excitations in an ensemble of rare-earth ions and suppress on demand the echo emission ("echo silencing") by two methods: (1) detuning the resonator during the spin rephasing, and (2) subjecting spins to magnetic field gradients generated by the bias current itself.

View Article and Find Full Text PDF