Publications by authors named "S E Kakabakos"

Aflatoxin M1 (AFM1) exposure through dairy products is associated with adverse health effects, including hepatotoxicity and carcinogenicity. Therefore, the AFM1 presence in milk and dairy products is strictly regulated. In this context, the current work focuses on the investigation of different competitive enzyme immunoassay configurations for the determination of AFM1 in milk with high sensitivity and short assay duration.

View Article and Find Full Text PDF

Survivin belongs to a family of proteins that promote cellular proliferation and inhibit cellular apoptosis. Its overexpression in various cancer types has led to its recognition as an important marker for cancer diagnosis and treatment. In this work, we compare two approaches for the immunochemical detection of survivin through surface-enhanced fluorescence or Raman spectroscopy using surfaces with nanowires decorated with silver nanoparticles in the form of dendrites or aggregates as immunoassays substrates.

View Article and Find Full Text PDF

The enhanced and direct immobilization of the enzyme horseradish peroxidase on poly(methyl methacrylate) (PMMA) microchannel surfaces to create a miniaturized enzymatic reactor for the biocatalytic oxidation of phenols is demonstrated. Enzyme immobilization occurs by physical adsorption after oxygen plasma treatment, which micro-nanotextures the PMMA surfaces. A five-fold enhancement in immobilized enzyme activity was observed, attributed to the increased surface area and, therefore, to a higher quantity of immobilized enzymes compared to an untreated PMMA surface.

View Article and Find Full Text PDF

The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach-Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk.

View Article and Find Full Text PDF

has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods.

View Article and Find Full Text PDF