In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring.
View Article and Find Full Text PDFIn drug discovery, structural knowledge of a target enables structure-based design approaches and thereby reduces the time and labor required to develop a therapy. Whilst molecular graphics frameworks coupled with computational analysis are now ubiquitous tools for the structural and computational biologist, sharing the detailed visualization and derived structural information with non-expert users still presents a challenge. Here we describe an intuitive virtual world for viewing, manipulating, and modifying chemical and macromolecular structures in a fully immersive and collaborative 3D environment.
View Article and Find Full Text PDFHistidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated.
View Article and Find Full Text PDFCurr Opin Cell Biol
April 2017
Histidine phosphorylation is crucial for prokaryotic signal transduction and as an intermediate for several metabolic enzymes, yet its role in mammalian cells remains largely uncharted. This is primarily caused by difficulties in studying histidine phosphorylation because of the relative instability of phosphohistidine (pHis) and lack of specific antibodies and methods to preserve and detect it. The recent synthesis of stable pHis analogs has enabled development of pHis-specific antibodies and their use has started to shed light onto this important, yet enigmatic posttranslational modification.
View Article and Find Full Text PDF