Publications by authors named "S E Draheim"

LY315920 is a potent, selective inhibitor of recombinant human, group IIA, nonpancreatic secretory PLA2 (sPLA2). In a chromogenic isolated enzyme assay, LY315920 inhibited sPLA2 activity with an IC50 of 9 +/- 1 nM or 7.3 x 10(-6) mole fraction, which approached the stiochiometric limit of this assay.

View Article and Find Full Text PDF

Phospholipases (PLAs) produce rate-limiting precursors in the biosynthesis of various types of biologically active lipids involved in inflammatory processes. Increased levels of human nonpancreatic secretory phospholipase A2 (hnps-PLA2) have been detected in several pathological conditions. An inhibitor of this enzyme could have therapeutic utility.

View Article and Find Full Text PDF

The preceding papers of this series detail the development of functionalized indole-3-acetamides as inhibitors of hnps-PLA2. We describe here the extension of the structure-activity relationship to include a series of indole-3-glyoxamide derivatives. Functionalized indole-3-glyoxamides with an acidic substituent appended to the 4- or 5-position of the indole ring were prepared and tested as inhibitors of hnps-PLA2.

View Article and Find Full Text PDF

As reported in our previous paper, a series of indole-3-acetamides which possessed potency and selectivity as inhibitors of human nonpancreatic secretory phospholipase A2(hnps-PLA2) was developed. The design of these compounds was based on information derived from x-ray crystal structures determined for complexes between the enzyme and its inhibitors. We describe here the further implementation of this structure-based design strategy and continued SAR development to produce indole-3-acetamides with additional functionalities which provide increased interaction with important residues within the enzyme active site.

View Article and Find Full Text PDF

Transgenic mice were created which overexpress human secretory non-pancreatic phospholipase A2 (sPLA2) pansomatically as a potential disease and drug-testing model. The mice were produced using a DNA construct in which the inducible mouse metallothionein gene promoter drives expression of a human sPLA2 minigene. High levels of sPLA2 were detected in several tissues by immunofluorescence localization.

View Article and Find Full Text PDF