Publications by authors named "S Dunin-Horkawicz"

Coiled coils are a common protein structural motif involved in cellular functions ranging from mediating protein-protein interactions to facilitating processes such as signal transduction or regulation of gene expression. They are formed by two or more alpha helices that wind around a central axis to form a buried hydrophobic core. Various forms of coiled-coil bundles have been reported, each characterized by the number, orientation, and degree of winding of the constituent helices.

View Article and Find Full Text PDF
Article Synopsis
  • - RNA-Puzzles is a collaborative project focused on improving the prediction of RNA three-dimensional structures, with predictions made by modeling groups before experimental structures are published.
  • - A significant set of predictions was made by 18 groups for 23 different RNA structures, including various elements like ribozymes and aptamers.
  • - The study highlights key challenges in RNA modeling, such as identifying helix pairs and ensuring proper stacking, and notes that some top-performing groups also excelled in a separate competition (CASP15).
View Article and Find Full Text PDF

RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates.

View Article and Find Full Text PDF

Biological modularity enhances evolutionary adaptability. This principle is vividly exemplified by bacterial viruses (phages), which display extensive genomic modularity. Phage genomes are composed of independent functional modules that evolve separately and recombine in various configurations.

View Article and Find Full Text PDF

In this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range.

View Article and Find Full Text PDF