Determination of the levels of protein cross-linking catalysed by the activity of transglutaminase 2 in various disease states has remained a significant challenge. The ability to quantify the isopeptide ε-(γ-glutamyl) lysine, which can form as a heterogeneous bond within or between proteins has significant analytical and clinical potential as a biomarker in biofluids such as human urine. Increased transglutaminase 2 activity is associated with a number of diseases, such as fibrosis.
View Article and Find Full Text PDFHarnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities.
View Article and Find Full Text PDFMany in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing a drug's disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience are reviewed here.
View Article and Find Full Text PDFThe inhaled route is still a relatively novel route for delivering biologics and poses additional challenges to those encountered with inhaled small molecules, further complicating the design and interpretation of toxicology studies. A working group formed to summarize the current knowledge of inhaled biologics across industry and to analyze data collated from an anonymized cross-industry survey comprising 12 inhaled biologic case studies (18 individual inhalation toxicity studies on monoclonal antibodies, fragment antibodies, domain antibodies, oligonucleotides, and proteins/peptides). The output of this working group provides valuable insights into the issues faced when conducting toxicology studies with inhaled biologics, including common technical considerations on aerosol generation, use of young and sexually mature nonhuman primates, pharmacokinetic/pharmacodynamic modeling, exposure and immunogenicity assessment, maximum dose setting, and no observed adverse effect levels determination.
View Article and Find Full Text PDFTreatment of nonhuman primates and mice with a humanized antigen-binding fragment (Fab) antibody (UCBFab) inhibiting transforming growth factor β via daily inhalation for up to 13 weeks resulted in low systemic exposure but high local exposure in the lung. Target engagement was demonstrated by reduced levels of signal transducers, phosphoSMAD and plasminogen activator inhibitor-1 in the bronchoalveolar lavage fluid (BALF). Treatment was associated with a high frequency and titer of antidrug antibodies, indicating high local immunogenicity, and local pathology within the lung and draining lymph nodes.
View Article and Find Full Text PDF