Infection with is the major cause of human gastroenteritis in the United States and Europe, leading to debilitating autoimmune sequelae in many cases. While considerable progress has been made in detailing the infectious cycle of , a full understanding of the molecular mechanisms responsible for virulence remains to be elucidated. Here, we apply a novel approach by modulating protein expression on the pathogen's ribosomes by inactivating a highly conserved rRNA methyltransferase.
View Article and Find Full Text PDFDihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive.
View Article and Find Full Text PDF