Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed.
View Article and Find Full Text PDFBrain derived neurotrophic factor (BDNF) is a neurotrophin, expressed in the central nervous system and in peripheral tissues, that is regulated by the Gsα/cAMP pathway. In bone, it regulates osteogenesis and stimulates RANKL secretion and osteoclast formation in osteolytic tumors such as Multiple Myeloma. Fibrous dysplasia (FD) of bone is a rare genetic disease of the skeleton caused by gain-of-function mutations of the Gsα gene in which RANKL-dependent enhanced bone resorption is a major cause of bone fragility and clinical morbidity.
View Article and Find Full Text PDFIntroduction: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy caused by various genetic alterations and characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). This abnormal growth of AML cells disrupts normal hematopoiesis and alters the BM microenvironment components, establishing a niche supportive of leukemogenesis. Bone marrow stromal cells (BMSCs) play a pivotal role in giving rise to essential elements of the BM niche, including adipocytes and osteogenic cells.
View Article and Find Full Text PDFIntroduction: Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized models to study the mechanisms of the interplay between the parasite and the human BM components are still missing.
Methods: We report a novel experimental system based on the infusion of immature gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells.
Multipotent stromal cells are considered attractive sources for cell therapy and tissue engineering. Despite numerous experimental and clinical studies, broad application of stromal cell therapeutics is not yet emerging. A major challenge is the functional diversity of available cell sources.
View Article and Find Full Text PDF