The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is involved in numerous physiological functions and plays a key role in pain modulation including neuropathic pain. Diabetic neuropathy is a common complication of diabetes mellitus often accompanied by chronic neuropathic pain. Animal models of diabetes offer relevant tools for studying the pathophysiological mechanisms and pharmacological sensitivity of diabetic neuropathic pain and for identifying new therapeutic targets.
View Article and Find Full Text PDFDiabetic neuropathy is often associated with chronic pain. Serotonin type 6 (5-HT) receptor ligands, particularly inverse agonists, have strong analgesic potential and may be new candidates for treating diabetic neuropathic pain and associated co-morbid cognitive deficits. The current study addressed the involvement of 5-HT receptor constitutive activity and mTOR signaling in an experimental model of diabetic neuropathic pain induced by streptozocin (STZ) injection in the rat.
View Article and Find Full Text PDFThe endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABA-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites.
View Article and Find Full Text PDFChronic neuropathic pain is a highly disabling syndrome that is poorly controlled by currently available analgesics. Here, we show that painful symptoms and associated cognitive deficits induced by spinal nerve ligation in the rat are prevented by the administration of serotonin 5-HT receptor inverse agonists or by the mTOR inhibitor rapamycin. In contrast, they are not alleviated by the administration of 5-HT receptor neutral antagonists.
View Article and Find Full Text PDF