Eur Heart J Cardiovasc Pharmacother
July 2016
More than 150 years from the initial description of inflammation in atherosclerotic plaques, randomized clinical trials to test anti-inflammatory therapies in atherosclerosis have recently been initiated. Lymphocytes and macrophages are main participants in the inflammatory response in atherosclerosis. T lymphocytes operate mainly by exerting strong influences on the function of many cells in the immune system and beyond, and co-ordinating their interactions.
View Article and Find Full Text PDFBackground: Reduced erythrocyte survival and deformability may contribute to the so-called anemia of inflammation observed in septic patients. Erythrocyte structure and function are affected by both the membrane lipid composition and the organization. We therefore aimed to determine whether these parameters are affected during systemic inflammation.
View Article and Find Full Text PDFSelf-tolerance and immune homeostasis are orchestrated by FOXP3(+)regulatory T cells (Tregs). Recent data have revealed that upon stimulation, Tregs may exhibit plasticity toward a proinflammatory phenotype, producing interleukin 17 (IL-17) and/or interferon γ (IFN-γ). Such deregulation of Tregs may contribute to the perpetuation of inflammatory processes, including graft-versus-host disease.
View Article and Find Full Text PDFBackground: Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation.
Objective: The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences.
Background: Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage.
View Article and Find Full Text PDF