Publications by authors named "S Digerness"

A key pathologic event in cardiac ischemia reperfusion (I-R) injury is mitochondrial energetic dysfunction, and several studies have attributed this to complex I (CxI) inhibition. In isolated perfused rat hearts, following I-R, we found that CxI-linked respiration was inhibited, but isolated CxI enzymatic activity was not. Using the mitochondrial thiol probe iodobutyl-triphenylphosphonium in conjunction with proteomic tools, thiol modifications were identified in several subunits of the matrix-facing 1alpha sub-complex of CxI.

View Article and Find Full Text PDF

Background: This study evaluates a multiple treatment approach (ie, pharmacologic preconditioning [diazoxide], sodium-proton exchange inhibition [cariporide], and controlled reperfusion) to improve the outcome from severe cardiac ischemia-reperfusion injury that occurs during a cardiac operation.

Methods: Five groups of 10 pigs (group 1: control, group 2: diazoxide, group 3: cariporide, group 4: controlled reperfusion, and group 5: combination of diazoxide and cariporide-controlled reperfusion) underwent 75 minutes of left anterior descending occlusion, 1 hour of cardioplegic arrest, and 2 hours of reperfusion. Prior to occlusion, each group received an infusion of vehicle alone (ie, dimethylsulfoxide for the control and the controlled reperfusion groups) or vehicle with drug (ie, diazoxide or cariporide, or both for all other groups).

View Article and Find Full Text PDF

Epidemiological evidence indicates that moderate alcohol consumption reduces the incidence of heart disease. Endothelial nitric oxide synthase (eNOS) is a key regulator of vascular homeostasis and myocardial functions through the controlled production of nitric oxide (*NO). These studies were conducted to determine if the apparent alcohol-associated cardioprotection is mediated, in part, through modulation of the eNOS protein and activity in the cardiovascular system.

View Article and Find Full Text PDF

We previously demonstrated that pinacidil does not affect Na(+)(i) accumulation, cellular energy depletion, or acidosis during myocardial ischemia, but dramatically improves the cationic/energetic status during reperfusion. We investigated the role of this latter effect in K(ATP) channel-induced cardioprotection. Employing (23)Na and (31)P nuclear magnetic resonance spectroscopy with perfused rat hearts, reperfusion Na(+)(i) was altered with brief infusions of ouabain and/or RbCl to transiently decrease or increase Na(+)/K(+) ATPase activity.

View Article and Find Full Text PDF

Background: This study determines whether controlled reperfusion or diazoxide improves intramyocyte Na(+) homeostasis using a porcine model of severe ischemia-reperfusion injury.

Methods: Three groups (n = 10 pigs per group) had 75 minutes of left anterior descending artery occlusion during bypass. Group 1 had no treatment (control group), group 2 had controlled reperfusion (500 mL warm cardioplegia) (controlled reperfusion group), and group 3 had diazoxide (50 micromol/L before left anterior descending artery occlusion) (diazoxide group).

View Article and Find Full Text PDF