Publications by authors named "S Di Angelantonio"

Article Synopsis
  • Microglia play a crucial role in regulating synaptic function in the brain, but their behavior in acute brain slices may be influenced by the slicing and maintenance process.
  • In this study, researchers found that after 4 hours of slicing, microglia show morphological and functional changes, including becoming more reactive and altering their signaling capabilities.
  • The study suggests that these changes in microglia correspond to a decrease in synaptic transmission in pyramidal neurons, highlighting the importance of considering time factors in ex vivo experiments involving microglia and synaptic function.
View Article and Find Full Text PDF

In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (SIM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object.

View Article and Find Full Text PDF

Functional studies of circular RNAs (circRNAs) began quite recently, and few data exist on their function in vivo. Here, we have generated a knockout (KO) mouse model to study circDlc1(2), a circRNA highly expressed in the prefrontal cortex and striatum. The loss of circDlc1(2) led to the upregulation of glutamatergic-response-associated genes in the striatal tissue, enhanced excitatory synaptic transmission in neuronal cultures, and hyperactivity and increased stereotypies in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Brain insulin resistance connects energy metabolism failure to cognitive decline in type 2 diabetes and Alzheimer's disease, but the early changes leading to insulin resistance are not well understood.
  • Abnormal levels of biliverdin reductase-A (BVR-A) are found in both conditions, linked to insulin resistance and affecting insulin signaling and energy production in the brain.
  • The study reveals that lower BVR-A disrupts insulin response and mitochondrial function, highlighting its importance for potential therapeutic targets to combat brain insulin resistance and neurodegeneration.
View Article and Find Full Text PDF
Article Synopsis
  • Tauopathies like Alzheimer's and Frontotemporal Dementia are severe brain disorders that cause cognitive decline, and accurate diagnosis is essential for developing effective treatments.
  • The study presents a new approach using humanized ferritin nanocages to deliver a tau-specific fluorophore (BT1) into human retinal cells, which helps detect neurofibrillary tangles associated with these conditions.
  • This innovative method showcases the potential of nanotechnology in improving the early detection and diagnosis of tauopathies, marking a significant advancement in nanobiotechnology and neurodegenerative disease management.
View Article and Find Full Text PDF