Publications by authors named "S Di"

Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Milk-derived extracellular vesicles (EVs) have various functions, including immune regulation and promoting intestinal development. These EVs have substantial potential for application in infant formula and functional foods development. In addition, numerous studies have shown that milk-derived EVs carry proteins, lipids, and nucleic acids away from their parental cells, acting as messengers between cells.

View Article and Find Full Text PDF

A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.

View Article and Find Full Text PDF
Article Synopsis
  • Necrotizing enterocolitis (NEC) is a serious intestinal condition mainly affecting premature infants, with a high incidence of about 8.9% and a mortality rate between 20-30%.
  • Human breast milk-derived exosomes (BME) show promise as a therapy for NEC by enhancing intestinal barrier function, protecting intestinal cells, and reducing disease severity in experimental models.
  • The article discusses how these exosomes work and the potential challenges in using them as a new treatment strategy for NEC, highlighting their beneficial properties like low immunogenicity and high permeability.
View Article and Find Full Text PDF