Biomonitoring studies have highlighted the exposure of pregnant women to pyrethroids based on the measurement of their metabolites in urine. Pyrethroids can cross the placental barrier and be distributed in the fetus as some pyrethroids were also measured in the meconium of newborns. Prenatal exposure to pyrethroids is suspected to alter the neurodevelopment of children, and animal studies have shown that early life exposure to permethrin, one of the most commonly used pyrethroid in household applications, can alter the brain development.
View Article and Find Full Text PDFPermethrin, a pyrethroid insecticide, is suspected to induce neuronal and hormonal disturbances in humans. The widespread exposure of the populations has been confirmed by the detection of the urinary metabolites of permethrin in biomonitoring studies. Permethrin is a chiral molecule presenting two forms, the cis and the trans isomers.
View Article and Find Full Text PDFThe MecoExpo study was performed in the Picardy region of northern France, in order to investigate the putative relationship between parental exposures to pesticides (as reported by the mother) on one hand and neonatal parameters on the other. The cohort comprised 993 mother-newborn pairs. Each mother completed a questionnaire that probed occupational, domestic, environmental and dietary sources of parental exposure to pesticides during her pregnancy.
View Article and Find Full Text PDFAn analytical method was developed to measure cis-permethrin and trans-permethrin in different biological rat matrices and fluids (whole blood, red blood cells, plasma, brain, liver, muscle, testes, kidneys, fat and faeces). The method was also suitable for the simultaneous quantification of their associated metabolites [cis-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (trans-DCCA) and 3-phenoxybenzoic acid (3-PBA)] in blood (whole blood, red blood cells, plasma) and liver. The target analytes were derivatised in samples using a methanolic/hydrochloric acid solution and then extracted with toluene.
View Article and Find Full Text PDFIn the present legislations, the use of methods alternative to animal testing is explicitly encouraged, to use animal testing only 'as a last resort' or to ban it. The use of alternative methods to replace kinetics or repeated dose in vivo tests is a challenging issue. We propose here a strategy based on in vitro tests and QSAR (Quantitative Structure Activity Relationship) models to calibrate a dose-response model predicting hepatotoxicity.
View Article and Find Full Text PDF