The integration of eDNA metabarcoding into monitoring programs provides valuable information about fish community structures. Despite the growing body of evidence supporting the method's effectiveness in distinguishing fine-scale eDNA signals, there is a limited understanding of eDNA distribution in shallow, well-mixed environments, especially related to sampling depth. We analyzed 167 samples collected from the surface and bottom water at 17 locations of the Belgian Part of the North Sea (BPNS), where the deepest sampling point was 31 m, and compared this to beam trawl catch data collected simultaneously at the same locations.
View Article and Find Full Text PDFMarine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities.
View Article and Find Full Text PDFIdentifying and understanding patterns of biological diversity is crucial at a time when even the most remote and pristine marine ecosystems are threatened by resource exploitation such as deep-seabed mining. Metabarcoding provides the means through which one can perform comprehensive investigations of diversity by examining entire assemblages simultaneously. Nematodes commonly represent the most abundant infaunal metazoan group in marine soft sediments.
View Article and Find Full Text PDFAtlantic and Pacific salmon are frequently consumed species with very different economic values: farmed Atlantic salmon is cheaper than wild-caught Pacific salmons. Species replacements occur with the high valued Pacific species (Oncorhynchus keta, O. gorbuscha, O.
View Article and Find Full Text PDFFishery products are often subject to substitution fraud, which is hard to trace due to a lack of morphologic traits when processed, gutted, or decapitated. Traditional molecular methods (DNA barcoding) fail to identify products containing multiple species and cannot estimate original weight percentages. As a proof of concept, an Atlantic salmon (Salmo salar) specific ddPCR assay was designed to authenticate mixed food products.
View Article and Find Full Text PDF