Phys Rev E Stat Nonlin Soft Matter Phys
July 2009
We construct self-similar functions and linear operators to deduce a self-similar variant of the Laplacian operator and of the D'Alembertian wave operator. The exigence of self-similarity as a symmetry property requires the introduction of nonlocal particle-particle interactions. We derive a self-similar linear wave operator describing the dynamics of a quasicontinuous linear chain of infinite length with a spatially self-similar distribution of nonlocal interparticle springs.
View Article and Find Full Text PDF