Thiazole derivatives are biologically relevant molecules, used also in pharmaceutical applications. Herein, we report results for electron attachment to 2-bromo-5-nitrothiazole (BNT) in the gas phase. Employing two crossed electron-molecule beam experiments, we determined the efficiency curves of various fragment anions as a function of the initial electron energy between about 0 and 10 eV as well as the emission angle and kinetic energy distributions of Br- and NO2- ions formed from a resonance near 4 eV.
View Article and Find Full Text PDFPlasmon-driven chemical conversion is gaining burgeoning interest in the field of heterogeneous catalysis. Herein, we study the reactivity of N-methyl-4-sulfanylbenzamide (NMSB) at nanocavities of gold and silver nanoparticle aggregates under plasmonic excitation to gain understanding of the respective reaction mechanism. NMSB is a secondary amide, which is a frequent binding motive found in peptides and a common coupling product of organic molecules and biomolecules.
View Article and Find Full Text PDF2-Bromo-1-(3,3-dinitroazetidin-1-yl)ethan-1-one (RRx-001) is a hypoxic cell chemotherapeutics with already demonstrated synergism in combined chemo-radiation therapy. The interaction of the compound with secondary low-energy electrons formed in large amounts during the physico-chemical phase of the irradiation may lead to these synergistic effects. The present study focuses on the first step of RRx-001 interaction with low-energy electrons in which a transient anion is formed and fragmented.
View Article and Find Full Text PDF8-Thiomethyladenine (ASCH), a potentially radiosensitizing modified nucleobase, has been synthesized in a reaction between 8-thioadenine and methyl iodide. Despite favorable dissociative electron attachment (DEA) characteristics, the radiolysis of an aqueous solution of ASCH with a dose of X-ray amounting to as much as 300 Gy leads to no effects. Nevertheless, crossed electron-molecule beam experiments in the gas phase on ASCH confirm the theoretical findings regarding the stability of its radical anion, namely, the most abundant reaction channel is related to the dissociation of the S-CH bond in the respective anion.
View Article and Find Full Text PDF