17beta-oestradiol (E(2)) may have a beneficial impact on the development of age-related diseases, in part through alpha and beta oestrogen receptors (ER) in glia. Tibolone, a synthetic steroid, could influence glial-mediated neuroprotection if agonist oestrogenic activity is demonstrable. We used the N20.
View Article and Find Full Text PDFThe estrogen receptor (ER)alpha is a biologically and clinically important ligand-modulated transcription factor. The F domain of the ERalpha modulates its functions in a ligand-, promoter-, and cell-specific manner. To identify the region(s) responsible for these functions, we characterized the effects of serial truncations within the F domain.
View Article and Find Full Text PDFObjective: The mechanism through which estrogen exerts its neuroprotective and anti-neurodegenerative effects in the central nervous system is poorly understood. Human glial cells are implicated in the pathogenesis of Alzheimer's disease and have both alpha and beta estrogen receptors (ER). We developed a glial cell model for ER function using the N20.
View Article and Find Full Text PDFThe estrogen receptor (ER), of which there are two forms, ERalpha and ERbeta, is a ligand-modulated transcription factor important in both normal biology and as a target for agents to prevent and treat breast cancer. Crystallographic studies of the ERalpha ligand-binding domain suggest that Leu-536 may be involved in hydrophobic interactions at the start of a helix, "helix 12," that is crucial in the agonist-stimulated activity of ERalpha, as well as in the ability of antagonists to block the activity of ERalpha. We found that certain mutations of Leu-536 increased the ligand-independent activity of ERalpha although greatly reducing or eliminating the agonist activity of 17beta-estradiol (E2) and 4-hydroxytamoxifen (4OHT), on an estrogen response element-driven and an AP-1-driven reporter.
View Article and Find Full Text PDFThe human estrogen receptor-alpha, a member of the nuclear receptor superfamily, is a ligand-regulated transcriptional modulator. Because comparatively little is known about the extreme carboxyl-terminal region of the estrogen receptor (F domain), we used secondary structure prediction to design mutations that delete the F domain (S554stop), disrupt a possible turn (G556L/G557L), and alter a predicted helix (S559A/E562A, Q565P), and we evaluated the effects of these mutations on hormone binding and transcription activation in response to estradiol and the mixed agonist/antagonist 4-hydroxytamoxifen. Mutations that deleted the F domain (S554stop) or targeted the predicted helix (S559A/E562A, Q565P) greatly reduced or eliminated the agonist activity of 4-hydroxytamoxifen.
View Article and Find Full Text PDF