Range uncertainties remain a limitation for the confined dose distribution that proton therapy can offer. The uncertainty stems from the ambiguity when translating CT Hounsfield Units (HU) into proton stopping powers. Proton Radiography (PR) can be used to verify the proton range.
View Article and Find Full Text PDFBackground: Dose calculation and optimization algorithms in proton therapy treatment planning often have high computational requirements regarding time and memory. This can hinder the implementation of efficient workflows in clinics and prevent the use of new, elaborate treatment techniques aiming to improve clinical outcomes like robust optimization, arc, and adaptive proton therapy.
Purpose: A new method, namely, the beamlet-free algorithm, is presented to address the aforementioned issue by combining Monte Carlo dose calculation and optimization into a single algorithm and omitting the calculation of the time-consuming and costly dose influence matrix.
Background: FLASH proton therapy has the potential to reduce side effects of conventional proton therapy by delivering a high dose of radiation in a very short period of time. However, significant progress is needed in the development of FLASH proton therapy. Increasing the dose rate while maintaining dose conformality may involve the use of advanced beam-shaping technologies and specialized equipment such as 3D patient-specific range modulators, to take advantage of the higher transmission efficiency at the highest energy available.
View Article and Find Full Text PDFPurpose: One of the main sources of uncertainty in proton therapy is the conversion of the Hounsfield Units of the planning CT to (relative) proton stopping powers. Proton radiography provides range error maps but these can be affected by other sources of errors as well as the CT conversion (e.g.
View Article and Find Full Text PDF