Publications by authors named "S De Campeneere"

The aim of this work was to determine the effect of 3-nitrooxypropanol (3-NOP) on the enteric methane (CH) emissions and performance of lactating dairy cows when mixed in with roughage or incorporated into a concentrate pellet. After 2 pretreatment weeks without 3-NOP supplementation, 30 Holstein Friesian cows were divided into 3 homogeneous treatment groups: no additive, 3-NOP mixed in with the basal diet (roughage; NOP), and 3-NOP incorporated into a concentrate pellet (NOP). The pretreatment period was followed by a 10-wk treatment period in which the NOP and NOP cows were fed 1.

View Article and Find Full Text PDF

Lowering the CP level in piglet diets reduces the risk of postweaning diarrhea and N excretion to the environment. The question remains at what point CP becomes limiting. An experiment was designed with 2 standardized ileal digestible (SID) Lys levels (10 and 11 g) and 6 CP levels (140, 150, 160, 170, 180, 190 g/kg) in a 2 × 6 factorial design (with 6 pens of 6 animals each per treatment).

View Article and Find Full Text PDF

The aim of this study was to evaluate the dose response on in vitro methane (CH) production of PUFA to which the inoculum donor animals had been exposed early in life. Sixteen Holstein calves (160 ± 3 and 365 ± 2 kg BW) at 6 and 12 mo of age were used as inoculum donors. Half of the calves were given increasing amounts of extruded linseed from birth (22 g/d) until 4 mo of age (578 g/d) first mixed with milk and then included in their concentrate.

View Article and Find Full Text PDF

During growth, pigs convert plant protein into animal protein. The major part of the ingested protein is excreted via manure, with potential nitrogen (N) losses to the environment. To limit N losses and increase sustainability of pork production, the efficiency of protein conversion should be maximized.

View Article and Find Full Text PDF

The rumen microbiome occupies a central role in animal health and productivity. A better understanding of the rumen ecosystem is essential to increase productivity or decrease methane production. Samples were collected from the three main rumen environments: the solid-adherent fraction, the liquid fraction and the epithelium.

View Article and Find Full Text PDF