Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response.
View Article and Find Full Text PDFAbscisic acid (ABA) plays a fundamental role in plant growth and development processes such as seed germination, stomatal response or adaptation to stress, amongst others. Increases in the endogenous ABA content is recognized by specific receptors of the PYR/PYL/RCAR family that are coupled to a phosphorylation cascade targeting transcription factors and ion channels. Just like other receptors of the family, nuclear receptor PYR1 binds ABA and inhibits the activity of type 2C phosphatases (PP2Cs), thus avoiding the phosphatase-exerted inhibition on SnRK2 kinases, positive regulators which phosphorylate targets and trigger ABA signalling.
View Article and Find Full Text PDFThe use of macrophytes has been proposed recently as a suitable option for the phytostabilization or rhizofiltration of soils or waters contaminated by trace elements. As one of the most representative species of this type of plant, common reed (Phragmites australis (Cav.) Trin.
View Article and Find Full Text PDFAutophagy is an essential process for the degradation of non-useful components, although the mechanism involved in its regulation is less known in plants than in animal systems. Redox regulation of autophagy components is emerging as a possible key mechanism with thioredoxins (TRXs) proposed as involved candidates. In this work, using overexpressing PsTRX1 tobacco cells (OEX), which present higher viability than non-overexpressing cells after HO treatment, we examine the functional interaction of autophagy and PsTRX1 in a collaborative response.
View Article and Find Full Text PDFSalinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRX1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two mutant lines in their growth under short photoperiod and higher light intensity than previous reported works.
View Article and Find Full Text PDF