Publications by authors named "S Danda"

Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu.

View Article and Find Full Text PDF

Objective: To catalog and correlate the clinical features and mutational spectrum of neurofibromatosis type 1 (NF1) patients attending a tertiary care center in India.

Methods: NF1 patients with confirmed molecular diagnosis from 2014 to 2021 were included in the study. The molecular tests used for the diagnosis were exome sequencing, targeted gene sequencing, and Multiple Ligation Probe Assay.

View Article and Find Full Text PDF

Kyphomelic dysplasia is a rare heterogenous group of skeletal dysplasia, characterized by bowing of the limbs, severely affecting femora with distinct facial features. Despite its first description nearly four decades ago, the precise molecular basis of this condition remained elusive until the recent discovery of de novo variants in the KIF5B-related kyphomelic dysplasia. We ascertained two unrelated consanguineous families with kyphomelic dysplasia.

View Article and Find Full Text PDF

Introduction:  The Alsin Rho Guanine Nucleotide Exchange Factor ( gene encodes a protein alsin that functions as a guanine nucleotide exchange factor. The variations in gene leads to degeneration of upper motor neurons of the corticospinal tract. The phenotypes resulting from variants in gene are infantile-onset ascending hereditary spastic paralysis (IAHSP, OMIM # 607225), juvenile primary lateral sclerosis (JPLS, OMIM # 606353), and juvenile amyotrophic lateral sclerosis (JALS, OMIM # 205100).

View Article and Find Full Text PDF

Objectives: Whole exome sequencing (WES) has emerged as the preferred method for diagnosing a range of Mendelian disorders. Nonetheless, the applicability of WES in genetic diagnosis of 21-hydroxylase deficiency (21-OHD) remains uncertain due to the intricacies involved in molecular analysis of the CYP21A2 gene.

Methods: In this case series, authors report the outcomes of couples or families who underwent WES followed by focused sequential strategy (FSS) targeting CYP21A2 gene hotspot mutations and targeted sequencing of genes associated with Congenital Adrenal Hyperplasia (CAH).

View Article and Find Full Text PDF